Temporal Principal Component Analysis — Advances in Dual Auto-regressive Modeling for Blind Gaussian Process Identification
نویسنده
چکیده
The recent paper (Cheung 2001) has studied the blind identification of Gaussian source process through a general temporal independent component analysis (ICA) approach named dual autoregressive modelling. It is actually a temporal extension of the classical principal component analysis without considering the principal order of the components. In this paper, we will further show the identifiable condition of the general temporal PCA (TPCA), and analyze the solution property of a specific TPCA algorithm presented in (Cheung 2001). Also, a new component ordering method is suggested, which includes the classical PCA ordering as a special case. Keywords— Temporal Independent Component Analysis, Dual Auto-Regressive Modelling, Temporal Principal Component Analysis, PCA Ordering.
منابع مشابه
Dual multivariate auto-regressive modeling in state space for temporal signal separation
Many existing independent component analysis (ICA) approaches result in deteriorated performance in temporal source separation because they have not taken into consideration of the underlying temporal structure of sources. In this paper, we model temporal sources as a general multivariate auto-regressive (AR) process whereby an underlying multivariate AR process in observation space is obtained...
متن کاملAdaptive Signal Detection in Auto-Regressive Interference with Gaussian Spectrum
A detector for the case of a radar target with known Doppler and unknown complex amplitude in complex Gaussian noise with unknown parameters has been derived. The detector assumes that the noise is an Auto-Regressive (AR) process with Gaussian autocorrelation function which is a suitable model for ground clutter in most scenarios involving airborne radars. The detector estimates the unknown...
متن کاملBlind Separation of Noisy Multivariate Data Using Second - Order Statistics
A second-order method for blind source separation of noisy instantaneous linear mixtures is presented and analyzed for the case where the signal order k and noise covariance GGH are unknown. Only a data set X of dimension n> k and of sample size m is observed, where X = AP + GW. The quality of separation depends on source-observation ratio }, the degree of spectral diversity, and the second-ord...
متن کاملPractical Generation of Video Textures using the Auto-Regressive Process
Recently, there have been several attempts at creating ‘video textures’, that is, synthesising new (potentially infinitely long) video clips based on existing ones. One way to do this is to transform each frame of the video into an eigenspace using Principal Components Analysis so that the original sequence can be viewed as a signature through this low-dimensional space. A new sequence can be g...
متن کاملPractical generation of video textures the auto-regressive process
Recently, there have been several attempts at creating ‘video textures’, that is, synthesising new (potentially infinitely long) video clips based on existing ones. One method for achieving this is to transform each frame of the video into an eigenspace using Principal Components Analysis so that the original sequence can be viewed as a signature through a low-dimensional space. A new sequence ...
متن کامل